MTC

- Independent RTO
- 900+ employees
- Training & Skills
- Engaged with Academia and Industry
- Develop and de-risk technologies
- support businesses with off-the shelf solutions

Prove Innovative Manufacturing Ideas & System Solutions

Lasers in Food

Introducing a new technology: Laser Cooking

Dr Mickey Crozier

24/07/2024

© MTC 2024 | The data contained in this document contains proprietary information. It may not be copied or communicated to a third party, or used for any purpose other than that for which it was supplied, without prior written consent from MTC.

Introduction

Laser Basics

- Lasers are light sources with unique properties.
- Monochromatic i.e. they are made up of a single 'colour' or wavelength
- Highly directional, minimal divergence (spread).
 - A low power (<5mW) laser pointer can be visible >1km away.
 - More powerful lasers are used to accurately measure the distance of the moon.
- They are coherent both spatially and temporally
- These properties allow lasers to deliver a lot of energy in a small space, enough to vaporise, melt or mark many materials.

How Lasers Work Laser light differs from ordinary light Laser Light Ordinary

- Monochromatic
- Directional
- Coherent

Light Amplification by Stimulated Emission of Radiation © 1999-2012 Convergent Laser Technologies

https://www.convergentlaser.com/laser-safety (accessed 2024)

Laser Applications in Food and Drink

The use of lasers in the food and drink industry is growing.

There are established markets for marking of packaging.

Newer applications including direct product marking, cleaning and even direct laser cooking are beginning to emerge.

Typical Benefits of Lasers

Non-contact. No cross contamination, no tool wear and reduced cleaning operations.

Environmentally friendly. Reduce labelling, clean without chemicals, low energy usage.

Digitally controlled. Easy to switch between products and mark dynamic data like barcodes/serial numbers/QR codes.

Laser Marking

Packaging

Laser produces a mark directly onto packaging.

Contrast of the mark can come from:

- Coating removal
- Chemical change at the surface
- Material removal (embossing)

The ideal laser for the job depends on the properties of the material to be marked.

MTC can help you develop the process and equipment.

<u>The Laser Marking for Food Packaging (dplaser.com)</u> <u>Food & Beverage Packaging | Environmentally Friendly (luxinar.com)</u> <u>Laser marking drink cans | Macsa ID</u>

Laser Marking

Direct marking of food products is beginning to be trialled by some retailers.

With the right laser process shelf life and eating quality are unaffected.

Remove the need for sticky labels and the associated costs and carbon footprint.

Laser-etched labels trialled on Tesco avocado range (foodmanufacture.co.uk) Swedish supermarkets replace sticky labels with laser marking | Guardian sustainable business | The Guardian

Laser Marking

Why we recommend

laser marking on food?

Personalisation

Lasers can also be used to add personalisation or branding directly to a product.

This is currently quite a niche application but could be used more widely for branding or applying 'cosmetic' marks like grill lines on meat products.

<u>Why we recommend laser marking on food? — Monportlaser</u> <u>Food Laser Applications for Laser Engravers and Cutters (epiloglaser.com)</u>

Lasers in Food Production

Laser Cleaning

Lasers are excellent for cleaning organic contaminants from metal surfaces.

With the right process all dirt is removed without damage or wear to the underlying surface.

Laser cleaning is fast and uses no water or chemical cleaners.

Both automated systems and hand held laser cleaners are available.

Lasers in Food Production

Handheld Laser Cleaning

There are established handheld laser cleaners on the market.

MTC can offer training and advice on safe implementation of handheld laser cleaning.

MTC are developing their own small, light and low cost handheld laser cleaning system.

We are looking for partners for application testing.

MTC are working on a very low cost, small, light and safe handheld laser cleaner.

Lasers in Food Manufacture

Laser Surface Texturing

Lasers can machine very small features into surfaces, much smaller than the width of a human hair.

Changing the geometry of a surface at those length scales can alter water or fat contact angle.

This can impart functional properties:

- Self-cleaning •
- Anti-stick •
- Improved thermal conductivity •

MTC have demonstrated laser surface texturing with Unilever in Horizon2020 project SHARK.

Functionality	Performance
Ice cream plate (anti-icing)	35% reduction in adhesion (under controlled environment)No significant change in adhesion (under actual machine environment)
Ice cream mould (anti-icing)	<5% reduction in adhesion
Ice-cream mould (Higher thermal conductivity)	~20% reduction in cooling time

Direct Laser Cooking

Direct Laser Cooking

Use of lasers for direct cooking of food products is an emerging application area.

IPG are leading the way and have a laser tailored specifically to cooking.

Potential benefits:

- Lower energy utilisation
- Faster cooking times
- Less shrinkage and water loss
- Highly automated and low maintenance/downtime
- Controllable and repeatable process.

Laser cooked cookies, courtesy of IPG Laser Cooking (foodengineeringmag.com)

Now We're Cooking with Lasers | Columbia Engineering

Summary

- Lasers have many potential uses in food manufacturing from marking of packaging (established) all the way through to direct laser cooking (emerging).
- Lasers have benefits in terms of sustainability, repeatability and cleanliness.
- Total cost of ownership of laser equipment is typically lower than other traditional equipment due to low running costs but the initial capital investment is higher.
- MTC can help you develop, prove and demonstrate laser process and work with you to develop the business case for laser equipment.
- We also offer training for your existing staff to support introduction of laser technology into your facility.

Laser Solutions for the Food & Beverage Industry

July 2024

© 2024 IPG Photonics

Lasers | Solutions for the Food and Beverage Industry

Fast, Sustainable and Precise

Baking

Fast

• Peanut butter cookies in 90 sec

Efficient

· Heats the product, not the Factory

Sustainable

- Low energy consumption
- No consumables or maintenance

Drying

Fast

• Dry apple slice in 10 min

Efficient

• "Cold Oven", little waste heat

Precise

 Infrared metrology for temperature control

Cleaning

Fast

• 1,200 m²/hr demonstrated

Effective

• Sterile, low contact angle

Sustainable

• No byproducts, low energy consumption

IPG Photonics At-a-Glance

Nasdaq IPGP 2004 IPO Massachusetts HQ World's largest volume supplier of Lasers to Industry Unique, vertically integrated Supply Chain Industry-leading earnings and cash flow

16

Laser Heater

Laser Heater | Rethinking the Future

Lasers overtaking conventional ovens across many industries

HOT OVEN

HOT AIR only dries the surface which reduces throughput and wastes energy

Sub-surface moisture requires time to be drawn to the surface before it can be removed

Food & Beverage Applications

- Pre-Heating
- Baking
- Drying

Industries engaging IPG

- Li-ion Battery
- Industrial Coatings
- Food & Beverage
- Chemical & Pharma
- Ceramics
- Silicon chipmaking
- Pulp & Paper

Laser Heater I a "cold" Oven

"**Cold**" Oven Paradigm Shift

An Oven which isn't Hot

- Heats only targeted material
- No thick, insulating oven walls
- Little heat radiates into the factory

Consumes energy only when on

- Agile: on/off in milliseconds
- No warm-up, no idling

Infrared Metrology

Process control

Drying Process Control

Speedy pre-heat Speedy drying in Bulk Endpoint Detection

- (

19

G

PHOTONICS

Baking | Peanut Butter Cookie Example

Peanut Butter Cookies

- Supermarket cookie dough
- Delicious after 90 sec at 290°F

Manufacturer's Recommendation

- Preheat oven to 350°F
- Bake 10-12 minutes

Drying | Apple Slice Example

Apple Slices

- Sliced around 1mm thickness
- Delicious after 10 min at 60°C
- Process would improve if laser illuminates fruit from both sides, convective air flow is optimized and if more reflectors are introduced to recycle reflected energy

Drying | Potato Chip Example

Potato Slices

- Sliced around 2.4mm thickness
- Crispy after 7 min at 95°C
- Process would improve if laser illuminates chip from both sides, thinner slicing, convective air flow is optimized and if reflective surfaces recycle reflected energy

Laser Heating | Operating Advantages

Benchmarking Analysis shared by Li-ion Battery Industry

Energy Consumption - 500 kW Drying Oven Replacement, Li-ion Battery, 90% utilization, US energy price

500kW Dryer Optical Efficiency	IPG Laser 55%	IR Lamp 32%
Annual Energy Consumption (8000hrs/year)	7.3 MW·hrs	12.5 MW·hrs
Annual Energy Cost (\$0.11/kW·hr)	\$800,000	\$1,375,000
Annual Savings at US Energy Rates	\$575,000	

OpEx – Maintenance & Cooling

	IPG Laser 55%	IR Lamp 32%
Maintenance	Zero planned maintenance - 7 years	Replace Lamps every 1-2 years
Thermal Management	House Water	Exhausts heat into Factory

IPG's DLS-ECO laser heater is maintenance free, easy to cool, requires less factory floor space

Hybrid Ovens | Retrofit / Upgrade Strategies

Enabling Laser pre-heat for Convective Baking

Retrofit – Laser pre-dried/heated product travels faster through existing long oven

Green Field – Laser pre-heat enables shorter oven

Hybrid Ovens capitalize on the speed and efficiency of laser heating, while preserving the baking attributes of traditional ovens

DLS-ECO | Turnkey Lab System

A Portable and Safe Laser Laboratory

- Class I laser safety certified safe to operate anywhere
- Integrates 2kW to 20kW DLS-ECO laser source
- Dual monitors for infrared metrology and viewing
- Thermal control loop tightly regulates sample temperature
- Write, save, repeat and edit job files
- Fume exhaust management, thermal cold-plate
- IPG chiller

Laser Heater | Key Take-Aways

27

G

PHOTONICS

Laser Cleaning | Value Proposition

Consumables Free, Productive and Sustainable

PHOTONICS

Laser Slashes Energy Consumption and Waste

Aqueous & Abrasive Cleaning Spend Dominated by Consumables

29

Laser Cleaning | Speed Record

200 milliseconds to degrease an 8.5"x11' metal surface

Laser Cleaning with Fast Scanner

- >1,000 m²/hour degreasing/drying
- Laser spot translates >1 km/sec
- Waste material conveniently sequestered
- Consumables-free

Laser Cleaning | Bakeware Example

Fast, no Byproducts, Touch-Free, Selective and Safe

Clean enough to eat off...

Laser sterilizes the surface it cleans

Laser Cleaning | Conveyor Belt

Fast, Sterile, no Byproducts, Touch-Free, Selective and Safe

Possibility to clean belts in-situ

Laser Cleaning I Suited for Automation

Fast, Sterile, no Byproducts, Touch-Free, Selective and Safe

Aerospace Turbine Example

- Robotic Cleaning Cell
- High Value parts refurbished
- Touch-free, laser cleaning is efficient, extends part life
- No by products, ablated coating is sequestered by fume management system

Laser Cleaning | Key Take-Aways

Laser Solutions for the Food & Beverage Industry

July 2024

© 2024 IPG Photonics